Reactions of 2-[(Phenylthio)methylene]tetralin-1-thione

Satoshi Moriyama and Shinichi Motoki* Department of Chemistry, Faculty of Science, Science University of Tokyo, Kagurazaka, Shinjuku-ku, Tokyo 162 (Received March 17, 1992)

Hetero Diels-Alder reactions of 2-[(phenylthio)methylene]tetralin-1-thione (1) with methyl acrylate, methyl vinyl ketone, acrylonitrile, and other electron-poor dienophiles afford the corresponding cycloadducts (2), from which thiophenol is eliminated by the treatment with sodium alkoxide to give the corresponding 2H-thiopyran derivatives (3). The cycloadducts 2 with styrene and indene do not undergo elimination. The reactions of thioketone 1 with cycloalkenones give both the cycloadducts and the elimination products, even in the absence of a base. The reactions of 1 with acryloyl, crotonoyl, cinnamoyl, and 3-methyl-2-butenoyl chlorides give dienecarbothioic S-esters, in good yields, which are converted into stable dienecarbodithioic esters by the treatment with Lawesson's reagent. In the reaction of 1 with methyl 2-bromoacrylate, elimination of sulfenyl bromide takes place to afford the elimination product 3.

Previously, synthesis of stable conjugated $\alpha, \beta: \gamma, \delta$ unsaturated thicketones starting from 2-[(phenylthic)methylene]tetralin-1-thione 1 were reported (Scheme 1).^{1,2)} An important point concerning the syntheses is that the treatment of cycloadducts 2 with sodium ethoxide produces conjugated dienones 3 along with an elimination of thiophenol. Interest in this key step of the synthesis has led us to further investigate the hetero Diels-Alder reaction of 1 with other dienophiles and the subsequent elimination of 2 (Scheme 2).

Results and Discussion

Reactions of β -phenylthio α,β -unsaturated thicketone 1, generated by the thermolysis of its dimer, with electron-poor dienophiles, viz., methyl acrylate, methyl vinyl ketone, acrylonitrile, acrylaldehyde, crotonaldehyde, cinnamaldehyde, 3-methyl-2-butenal, dimethyl fumarate, and N-phenylmaleimide, were carried out in refluxing benzene for 1 to 5 h to give the cycloadducts 2a-i (Table 1). Styrene and indene also gave similar adducts, 2j,k.

The ¹H NMR spectrum of **2a** exhibited four signals of the 3,4-dihydro-2*H*-thiopyran ring protons (Fig. 1). The signals at δ =3.56 and 3.14 were assigned to *H-2a* and H-2e, respectively. The former signal due to H-2a showed a large vicinal axial-axial coupling with H-3 (J=12.2 Hz) as well as a geminal coupling with H-2e (J=12.9 Hz); the latter signal of H-2e showed a W-lattice long range coupling with H-4 (J=2.0 Hz) in addition to the coupling with H-3 (J=3.3 Hz) and H-2a (J=12.9Hz). The small coupling constant (J=2.6 Hz) between H-3 and H-4 indicates that these protons are situated in the axial-equatorial positions; 2a is therefore considered to be an endo-adduct (H-3 and H-4 are in cis-relationship). Analysis of the ¹H NMR spectra of the other adducts proved that 2b—h were also endo-adducts. The adduct 2i (with styrene) showed an ambiguous ¹H NMR spectrum; its structure (endo-adduct) was thus determined by conversion into the corresponding sul-

$$\begin{array}{c}
0 \\
\text{SPh} \\
\hline
CS_2. \Delta
\end{array}$$

$$\begin{array}{c}
S \\
\text{SPh}
\end{array}$$

$$\begin{array}{c}
S \\
\text{SPh}
\end{array}$$

$$\begin{array}{c}
S \\
\text{SPh}
\end{array}$$

$$\begin{array}{c}
1 \\
1 \\
\end{array}$$
Dimer of 1

$$\underline{1} \quad \underbrace{\frac{R}{C_6H_6. \triangle}}^{R} \xrightarrow{S} \underbrace{\frac{R}{R}}^{R} \xrightarrow{S} \underbrace{\frac{L.R.}{CS_2. \triangle}}_{\alpha, \beta: \gamma, \delta-Unsaturated}$$

$$\underline{1} \quad \underbrace{\frac{R}{C_6H_6. \triangle}}^{R} \xrightarrow{L.R.} \underbrace{\frac{L.R.}{CS_2. \triangle}}_{\alpha, \beta: \gamma, \delta-Unsaturated}$$
Thicketone

L.R.: Lawesson's Reagent

Table 1. Cycloaddition Reactions of Thioketone 1 with Dienophiles and Subsequent Elimination Reactions of Thiophenol from the Cycloadducts 2

	Dienopl R	hile H			Cycl	oadduct 2	Elimination product 3			
	R' R	Z R'	Z	Reaction time/h	Yield/%	Mp/°C	IR/cm ⁻¹	Yield/%	Mp/°C	IR/cm ⁻¹
a	Н	Н	CO ₂ CH ₃	1	88	100—102	1748 (C=O)	89	80—81	1698 (C=O)
b	Н	H	$COCH_3$	1	85	129—130	1706 (C=O)	92	116—117	1651 (C=O)
c	Н	H	CN	1	77	113—114	2240 (C≡N)	82	7071	2204 (C≡N)
d	Н	H	CHO	3	90	140—141	1724 (C=O)	96	74—75	1674 (C=O)
e	CH_3	H	CHO	2.5	48	92—93	1728 (C=O)	92	Oil	1660 (C=O)
f	C_6H_5	Н	CHO	3	85	135—136	1724 (C=O)	96	Oil	1662 (C=O)
g	CH_3	CH_3	CHO	5	76	126—127	1714 (C=O)	56	87—88	1672 (C=O)
h	CO_2CH_3	H	CO_2CH_3	1	83	149—150	1736 (C=O)	75	65—66	(1742 (C=O)
i	Н	-c,0	'N-C ₆ H ₅	1	88	199—200	1735 (C=O)	_	_	\1706 (C=O) —
j	Н	Н	C_6H_5	2	54	135—137				
k	Н	-CH ₂	\bigcirc	1.5	57	140—142	_	_		

$$H_{4}$$
 $CO_{2}Me$
 H_{2e}
 H_{2e}

Fig. 1.

foxide 2j'. The adducts, 2i and 2k, (with N-phenylmaleimide and indene) showed large (H-2)-(H-3) coupling constants (J=9.2 and 8.9 Hz) respectively. This suggests that the 3,4-dihydro-2H-thiopyran rings of 2i and 2k possess a boat form rather than a half-chair form, unlike in the case of 2a—h. No regio- and stereo-isomers were formed in detectable amounts in these reactions.

The treatment of the adducts 2a—h with sodium methoxide (or sodium ethoxide) at room temperature overnight afforded the corresponding 2H-thiopyran derivatives 3a—h in high yields as the result of an elimination of thiophenol. The reaction of 2i with sodium ethoxide gave an unidentified decomposition product. However, adducts 2j and 2k did not undergo elimination, even upon using stronger bases, such as KOBu', NaH, or BuLi. This result indicates that the presence of an electron-withdrawing group at position-3 in 2 is necessary for the facile elimination of thiophenol.

On the contrary, when 1 was heated with 2-cyclohexen-1-one, cycloaddition followed by the elimination of thiophenol took place concurrently to give the cycloadduct 4b and elimination product 5b. 2-Cyclopenten-1-one gave only elimination product 5a; an attempt to obtain the cycloadduct 4a by carrying out the reaction at lower temperature was unsuccessful. The dienone 5b was also obtained by treatment of 4b with sodium ethoxide at room temperature for a short reaction time. Although there is no experimental evidence for the readiness of the elimination reaction of 4, it is likely that the PhS group and H-3 in 4 are rigidly placed in the trans-diaxial conformation of their fused-ring.

Acryloyl, crotonoyl, cinnamoyl, and 3-methyl-2butenoyl chlorides were allowed to react readily with 1 in refluxing benzene to give the corresponding cycloadducts. 3-Methyl-2-butenoyl chloride was so less reactive that prolonged heating was required. As these adducts were too unstable to be separated by column chromatography, they were successively treated with triethylamine. Instead of dienecarboxylic acid chloride, dienecarbothioic S-esters 6a-d were obtained in fairly good yields. As is well known, acid chlorides containing α -hydrogen readily undergo dehydrohalogenation with tertiary amines to yield ketenes. The formation of 6 thus presumably proceeded via conversion of the initially formed cycloadducts into ketene derivatives, followed by an intramolecular nucleophilic attack (rearrangement) of the PhS group onto the central ketene carbon. The dienecarbothioic S-esters 6 were readily converted into conjugated dienecarbodithioic esters 7a—d by the treatment with Lawesson's reagent. Except for some examples, 3,4) conjugated dithioesters are generally unstable and dimerize by a self-cycloaddition reaction.^{5,6)} However, highly conjugated dithioesters 7a-d were found to be very stable and in the monomeric forms, as like as $\alpha, \beta: \gamma, \delta$ -unsaturated thioketones reported previously.2)

Interesting results were obtained in the reaction of 1 with α -halo dienophiles. With 2-chloroacrylonitrile, the product was an inseparable mixture of *endo*- and *exo*-adducts 21. Upon the treatment of 21 with triethyl-

Table 2. Reactions of Thioketone 1 with Cycloalkenones

-	Cycloalkenone	Reaction	Reaction time/h		Cycloadduc	t 4	Elimination Product 5		
	Cycloalkellolle	temp/°C		Yield/%	Mp/°C	IR/cm ⁻¹	Yield/%	Mp/°C	IR/cm ⁻¹
a	2-Cyclopenten-1-one	65	2	0	_		54	154—155	1694 (C=O)
b	2-Cyclohexen-1-one	65	2	37	130—131	1714 (C=O)	20	108—109	1664 (C=O)
b	2-Cyclohexen-1-one	80	1	32	130—131	1714 (C=O)	10	108—109	1664 (C=O)

Table 3. Reactions of Thioketone 1 with Acid Chloride and Subsequent Conversion of the Products 6 into Dithioesters 7

		S-P	henyl thioe	ster 6	Dithioester 7				
	Acid chloride	Reaction time	Yield/%	Mp/°C	Reaction temp/°C	Reaction time/h	Yield/%	Mp/°C	
a	Acryloyl chloride	5 min	57	160—162	110	7	68	146—147	
b	Crotonoyl chloride	15 min	59	148—149	110	7	72	154—155	
c	Cinnamoyl chloride	15 min	70	139—141	110	10	72	134135	
d	3-Methyl-2-butenoyl chloride	5 h	66	111—112	140	10	50	Red oil	

amine, elimination of hydrogen chloride took place, giving 3-cyano-4-phenylthio-2H-thiopyran derivative 8. In contrast, heating 1 with methyl 2-bromoacrylate afforded the same 3-methoxycarbonyl-2H-thiopyran derivative as did the elimination product 3 \mathbf{a} , as the result of elimination of sulfenyl bromide from the adduct. Although it is well known that sulfenyl halides add smoothly to alkenes to give β -chloro sulfides, 7 only a few examples concerning the elimination of sulfenyl halides giving alkenes have been reported. The contrast between these two reactions with different α -halo dienophiles are under further investigation.

Experimental

All melting points are uncorrected. ¹H and ¹³C NMR spectra were determined on a JEOL JNM FX-100 (100 MHz) or EX-270 (270 MHz) spectrometer in CDCl₃ solvent. Tetramethylsilane was used as an internal standard. IR spectra (KBr disk) were measured with a Hitachi 270-30. Mass spectra were measured on a Hitachi mass spectrometer RMU-7M (70 eV) with a data-proceeding system M-003. Elemental analysis was performed using a Yanagimoto Model MT-3 CHN corder.

A Typical Procedure for the Cycloaddition Reaction of 2-[(Phenylthio)methylene]tetralin-1-thione 1 with Dienophiles. A solution of the dimer (3.55 mmol/monomer) of the thioketone 1 and methyl acrylate (10.6 mmol) in dry benzene (50 cm³) was refluxed for 1 h under a nitrogen atmosphere. The solvent was removed and the residue was chromatographed on Wakogel C-200 with ethyl acetate-hexane (1:8) to give the cycloadduct 2a, which was recrystallized from hexane.

3,4,5,6-Tetrahydro-4-phenylthio-3-methoxycarbonyl-2*H*-naphto [1,2-*b*] thiopyran (2a): Colorless plates; MS m/z 368 (M⁺; 0.3), 258 (M⁺—PhSH; 35), 243 (72), 199 (100), 165 (37), 152 (13), 115 (19), 110 (74); ¹H NMR δ =2.33—2.47 (1H, m), 2.67—2.87 (3H, m), 3.14 (1H, ddd, J=2.0, 3.3, 12.9 Hz), 3.19 (3H, s), 3.24 (1H, ddd, J=2.6, 3.3, 12.2 Hz), 3.56 (1H, dd, J=12.2, 12.9 Hz), 4.29 (1H, dd, J=2.0, 2.6 Hz), 7.10—7.32 (6H, m), 7.39—7.51 (3H, m); ¹³C NMR δ =22.9 (t), 28.4 (t), 30.4 (t), 44.9 (d), 51.3 (q), 53.1 (d), 171.2 (C=O; s). Found: C, 68.71; H, 5.43%. Calcd for C₂₁H₂₀O₂S₂: C, 68.44; H, 5.47%.

3,4,5,6-Tetrahydro-4-phenylthio-3-acetyl-2*H*-naphto[1,2-b]thiopyran (2b): Colorless needles; MS m/z 352 (M+; 0.3), 242 (M+-PhSH; 20), 199 (100), 165 (24), 110 (45), 43 (79); ¹H NMR δ =1.83 (3H, s), 2.35—2.58 (1H, m), 2.79—2.91 (3H, m), 3.07 (1H, ddd, J=1.7, 2.6, 12.9 Hz), 3.19 (1H, ddd, J=2.6, 3.0, 11.9 Hz), 3.46 (1H, dd, J=11.9, 12.9 Hz), 4.20 (1H, dd, J=1.7, 3.0 Hz), 7.11—7.33 (5H, m), 7.40—7.52 (4H, m); ¹³C NMR δ =22.8 (t), 28.4 (2C; t, q), 30.6 (t), 52.5 (d), 53.4 (d), 206.0 (C=O; s). Found: C, 71.32; H, 5.63%. Calcd for C₂₁H₂₀OS₂: C, 71.55; H, 5.72%.

3-Cyano-3,4,5,6-tetrahydro-4-phenylthio-2*H*-naphto[1,2-*b*]thiopyran (2c): Colorless needles; MS m/z 335 (M⁺; 13), 225 (M⁺-PhSH; 100), 193 (22), 165 (22), 152 (11), 115 (18), 110 (36); 1 H NMR δ =2.26—2.40 (1H, m), 2.72—2.89 (3H, m), 3.17 (1H, ddd, J=2.0, 2.0, 12.5 Hz), 3.47 (1H, ddd, J=2.0, 3.3, 12.2 Hz), 3.60 (1H, dd, J=12.2, 12.5 Hz), 3.89 (1H, dd, J=2.0, 3.3 Hz), 7.12—7.41 (7H, m), 7.65—7.70 (2H, m); 13 C NMR δ =25.0 (t), 28.1 (t), 30.3 (t), 33.3 (d), 52.1 (d). Found: C, 71.46; H, 5.13; N, 4.09%. Calcd for C₂₀H₁₇NS₂: C, 71.60; H, 5.11; N, 4.18%.

3-Formyl-3,4,5,6-tetrahydro-4-phenylthio-2*H*-naphto[1,2-*b*]thiopyran (2d): Pale yellow needles; MS m/z 228 (M⁺ -PhSH; 43), 199 (100), 165 (16), 110 (59); ¹H NMR δ =2.11—2.28 (4H, m), 2.95—3.54 (3H, m), 4.24 (1H, d, J=3.0 Hz), 6.01—5.56 (9H, m), 9.46 (1H, bs); ¹³C NMR δ =21.9 (t), 28.4 (t), 30.3 (t), 52.0 (d), 52.6 (d), 198.7 (H-C=O; d). Found: C, 70.97; H, 5.22%. Calcd for C₂₀H₁₈OS₂: C, 70.97; H, 5.36%.

3-Formyl-3,4,5,6-tetrahydro-2-methyl-4-phenylthio-2*H*-naphto[1,2-*b*]thiopyran (2e): Pale yellow cubes; MS m/z 352 (M+; 1), 243 (M+-PhS; 100), 227 (19), 213 (60), 199 (37), 165 (26), 117 (57), 110 (30); ¹H NMR δ=1.48 (3H, d, J=6.6 Hz), 2.26—2.38 (1H, m), 2.43—2.82 (4H, m), 4.01 (1H, dq, J=6.6, 10.9 Hz), 4.12 (1H, d, J=3.6 Hz), 7.10—7.46 (9H, m), 9.77 (1H, d, J=3.0 Hz); ¹³C NMR· δ=19.1 (q), 28.1 (t), 29.3 (t), 31.8 (d), 53.0 (d), 56.8 (d), 201.3 (H-C=O; d). Found: C, 71.53; H, 5.90%. Calcd for C₂₁H₂₀OS₂: C, 71.53; H, 5.90%.

3-Formyl-3,4,5,6-tetrahydro-2-phenyl-4-phenylthio-2*H*-naphto[1,2-*b*]thiopyran (2f): Pale yellow crystals; MS m/z 275 (M+-PhSH-CHO; 100), 241 (7), 110 (47); ¹H NMR δ =2.07—2.94 (4H, m), 3.38 (1H, ddd, J=3.0, 3.8, 11.8 Hz), 4.21 (1H, d, J=3.8 Hz), 5.06 (1H, d, J=11.8 Hz), 6.89—7.52 (14H, m), 9.46 (1H, d, J=3.0 Hz); ¹³C NMR δ =28.3 (t), 29.4 (t), 41.8 (d), 54.1 (d), 55.3 (d), 201.5 (H-C=O; d). Found: C, 75.41; H, 5.25%. Calcd for C₂₆H₂₂OS₂: C, 75.32; H, 5.35%.

3-Formyl-3,4,5,6-tetrahydro-2,2-dimethyl-4-phenylthio-2H-naphto[1,2-b]thiopyran (2g): Pale yellow needles; MS m/z 366 (M+; 0.2), 257 (M+-PhS; 95), 229 (49), 227 (100), 213 (34), 187 (49), 165 (14), 117 (30), 110 (60), 65 (24); 1 H NMR δ =1.38 (3H, s), 1.44 (3H, s), 2.41 (1H, dd, J=4.6, 6.0 Hz), 2.50—2.68 (1H, m), 2.71—2.96 (3H, m), 4.23 (1H, d, J=6.0 Hz), 7.08—7.46 (9H, m), 9.64 (1H, d, J=4.6 Hz); 13 C NMR (DEPT) δ =27.1 (CH₃), 28.5 (CH₂), 28.7 (CH₂), 29.1 (CH₃), 42.6 (C), 51.8 (CH), 57.4 (CH), 200.1 (H- Γ =0). Found: C, 72.10; H, 6.12%. Calcd for C₂₂H₂₂OS₂: C, 72.09; H, 6.05%.

3,4,5,6-Tetrahydro-2,3-bis (methoxycarbonyl)-4-phenylthio-2*H*-naphto[1,2-*b*]thiopyran (2h): Colorless needles; MS m/z 426 (M+; 0.2), 395 (M+-OMe; 0.4), 363 (0.3), 335 (0.3), 317 (M+-PhS; 37), 285 (32), 257 (100), 199 (16), 165 (10), 109 (10); 1H NMR δ =2.37—2.72 (1H, m), 2.71—2.91 (3H, m), 3.14 (3H, s), 3.47 (1H, dd, J=3.3, 11.6 Hz), 3.80 (3H, s), 4.28 (1H, d, J=3.3 Hz), 4.71 (1H, d, J=11.6 Hz), 7.10—7.50 (9H, m); 13C NMR (DEPT) δ =28.3 (CH₂), 30.0 (CH₂), 39.5 (CH), 42.8 (CH), 51.6 (CH₃), 52.7 (CH), 53.0 (CH₃), 170.5 (C=O), 171.1 (C=O). Found: C, 64.69; H, 5.49%. Calcd for C₂₃H₂₂O₄S₂: C, 64.76; H, 5.20%.

5,6,7,7a,9,11a-Hexahydro-9-phenyl-7-phenylthio-11-thia-9-azacyclopenta[b]phenanthrene-8,10-dione (2i): MS m/z 346 (M+-PhS; 49), 226 (31), 198 (100), 165 (45), 110 (78); ¹H NMR δ =2.32—2.72 (4H, m), 3.81 (1H, dd, J=4.3, 9.2 Hz), 4.41 (1H, d, J=4.3 Hz), 4.41 (1H, d, J=9.2 Hz), 7.06—7.43 (13H, m), 7.63 (1H, d, J=7.3 Hz); ¹³C NMR (DEPT) δ =27.8 (CH₂), 28.3 (CH₂), 43.6 (CH), 49.3 (CH), 52.4 (CH), 174.1 (C=O), 174.2 (C=O). Found: C, 70.59; H, 4.58; N, 3.14%. Calcd for C₂₇H₂₁O₂NS: C, 71.18; H, 4.65; N, 3.07%.

3,4,5,6-Tetrahydro-3-phenyl-4-phenylthio-2*H*-naphto[1,2-*b*]thiopyran (2j): Colorless cubes; MS m/z 386 (M+; 1), 276 (M+-PhSH; 100), 244 (12), 199 (24), 110 (35); ¹H NMR δ =2.32—2.45 (1H, m), 2.71—2.85 (3H, m), 3.08 (1H, ddd, J=1.7, 1.7, 11.6 Hz), 3.67—3.86 (3H, m), 6.75—6.80 (2H, m), 6.93—7.04 (3H, m), 7.10—7.28 (8H, m), 7.46—7.51 (1H, m); ¹³C NMR δ =26.3 (t), 28.5 (t), 30.7 (t), 44.6 (d), 59.6 (d). Found: C, 77.94; H, 5.37%. Calcd for C₂₅H₂₂S₂: C, 77.67; H,

5.37%.

5,6,7,7a,12,12a-Hexahydro-7-phenylthio-13-thiaindeno[3,2-b]phenanthrene (2k): MS m/z 398 (M+; 0.2), 289 (M+-PhS; 100), 255 (21), 239 (9), 205 (22), 174 (11), 161 (10), 141 (19), 128 (33), 115 (45), 110 (48), 77 (24), 65 (35), 39 (43), 28 (60); 1 H NMR δ =2.19—2.27 (1H, m), 2.37—2.71 (3H, m), 3.44—3.48 (2H, m), 3.91 (1H, dd, J=4.0, 8.9 Hz), 4.17 (1H, ddd, J=2.0, 8.9, 17.5 Hz), 4.30 (1H, d, J=4.0 Hz), 6.68—7.38 (12H, m), 7.59—8.00 (1H, m); 13 C NMR (DEPT) δ =28.1 (CH₂), 29.5 (CH₂), 42.5 (CH), 42.7 (CH₂), 51.8 (CH), 57.9 (CH). Found: C, 78.42; H, 5.29%. Calcd for C₂₆H₂₂S₂: C, 78.35; H, 5.56%.

Oxidation of the Cycloadduct 2j. A solution of m-chloroperbenzoic acid (1.88 mmol, 80%; Nakarai Tesk) in CH_2Cl_2 (30 cm³) was added dropwise to a solution of the cycloadduct 2j (1.25 mmol) in CH_2Cl_2 (30 cm³) at $-15\,^{\circ}C$ under a nitrogen atmosphere. After stirring for 4 h at room temperature, the reaction mixture was washed with a NaHCO₃ aqueous solution and water, and then dried over anhydrous MgSO₄. The solvent was removed and the residue was chromatographed on Wakogel C-200 with CH_2Cl_2 to give sulfoxide 2j′, which was recrystallized from CH_2Cl_2 -hexane (yield 56%).

3,4,5,6-Tetrahydro-3-phenyl-4-phenylthio-2H-naphto[1,2,-b]thiopyran 1-oxide (2j): Colorless cubes; mp 208—210 °C; IR; 1030 cm⁻¹ (S=O); MS m/z 402 (M+; 1), 385 (M+—O—H; 67), 293 (M+—PhS; 17), 275 (20), 244 (87), 189 (100), 165 (15), 128 (35), 115 (38), 109 (29), 91 (49); ^{1}H NMR δ =2.46—2.61 (1H, m), 2.77—2.95 (3H, m), 3.40 (1H, dd, J=2.3, 13.5 Hz), 3.51 (1H, dd, J=12.5, 13.5 Hz), 3.87 (1H, d, J=3.3 Hz), 4.46 (1H, ddd, J=2.3, 3.3, 12.5 Hz), 6.70—7.34 (13H, m), 7.97 (1H, d, J=7.3 Hz); ^{13}C NMR (DEPT) δ =27.7 (CH₂), 30.6 (CH₂), 34.1 (CH), 45.8 (CH₂), 60.1 (CH). Found: C, 74.62; H, 5.42%. Calcd for $C_{25}H_{22}OS_2$: C, 74.59; H, 5.51%.

A Typical Procedure for the Elimination of Thiophenol from the Cycloadducts 2. To a solution of the cycloadduct 2a (2.47 mmol) in benzene (50 cm³) was added a sodium methoxide solution (sodium metal (13.0 mmol) in methanol (50 cm³)). After stirring for 1 d, water was added to the mixture. The product was extracted with ether and dried over anhydrous MgSO₄. The solvent was removed and the residue was chromatographed on Wakogel C-200 with ethyl acetate-hexane (1:8) to give 2*H*-thiopyran 3a, which was recrystallized from ether-hexane.

5,6-Dihydro-3-methoxycabonyl-2H-naphto[1,2-b]thiopyran (3a): Yellow plates; MS m/z 258 (M⁺; 48), 243 (83), 227 (6), 199 (100), 197 (23), 165 (29), 115 (13), 59 (5); ¹H NMR δ = 2.51—2.57 (2H, m), 2.82—2.87 (2H, m), 3.68 (2H, s), 3.82 (3H, s), 7.15—7.29 (4H, m), 7.54—7.60 (1H, m); ¹³C NMR (DEPT) δ =24.3 (CH₂), 28.0 (CH₂), 28.4 (CH₂), 52.0 (CH₃), 166.6 (C=O). Found: C, 69.81; H, 5.65%. Calcd for C₁₅H₁₄O₂S: C, 69.74; H, 5.46%.

5,6-Dihydro-3-methylcarbonyl-2*H***-naphto[1,2-***b***]thiopyran (3b): Orange cubes; MS m/z 242 (M⁺; 31), 199 (100), 165 (10); ¹H NMR \delta=2.40 (3H,s), 2.44—2.97 (4H, m), 3.67 (2H, s), 7.01 (1H, s), 7.06—7.29 (3H, m), 7.46—7.60 (1H, m); ¹³C NMR \delta=22.9 (t), 25.2 (q), 28.0 (t), 28.5 (t), 196.0 (C=O; s). Found: C, 74.50; H, 5.82%. Calcd for C₁₅H₁₄OS: C, 74.34; H, 5.82%.**

3-Cyano-5,6-dihydro-2*H*-naphto[1,2-*b*]thiopyran (3c): MS m/z 225 (M+; 100), 210 (8), 197 (10), 190 (25), 165 (28), 152 (10), 115 (18), 32 (21); ¹H NMR δ=2.35—2.61 (2H, m), 2.75—2.95 (2H, m), 3.46 (2H, s), 5.76 (1H, s), 6.04—6.32 (3H, m), 6.40—6.58 (1H, m); ¹³C NMR δ=26.0 (t), 27.7 (t), 28.1 (t), 95.1 (\underline{C} - \underline{C} = \underline{N} ; s), 118.8 (\underline{C} = \underline{N} ; s). Found: C, 74.54; H, 4.89; N,

5.91%. Calcd for C₁₄H₁₁NS: C, 74.63; H, 4.92; N, 6.22%.

3-Formyl-5,6-dihydro-2*H*-naphto[1,2-*b*]thiopyran (3d): Orange plates; MS m/z 228 (M⁺; 49), 199 (M⁺-CHO; 100), 165 (15), 115 (16); ¹H NMR δ=2.48—3.00 (4H, m), 3.66 (2H, s), 6.85 (1H, s), 7.08—7.36 (3H, m), 7.49—7.65 (1H, m), 9.45 (1H, s); ¹³C NMR δ=21.9 (t), 28.0 (t), 28.3 (t), 190.5 (C=O; d). Found: C, 73.77; H, 5.10%. Calcd for C₁₄H₁₂OS; C, 73.65; H, 5.30%.

3-Formyl-5,6-dihydro-2-methyl-2*H*-naphto[1,2-*b*]thiopyran (3e): Orange cubes; MS m/z 242 (M+; 30), 227 (M+-Me; 33), 213 (100), 197 (5), 178 (6), 165 (15), 128 (3), 115 (6); ¹H NMR δ =1.23 (3H, d, J=6.9 Hz), 2.44—2.55 (1H, m), 2.63—2.98 (3H, m), 8.37 (1H, q, J=6.9 Hz), 6.82 (1H, s), 7.16—7.29 (3H, m), 7.61—7.67 (1H, m), 9.55 (1H, s); ¹³C NMR (DEPT) δ =21.0 (CH₃), 28.1 (CH₂), 28.4 (CH₂), 30.0 (CH), 190.8 (C=O). Found: C, 64.52; H, 5.09%. Calcd for C₁₅H₁₄OS: C, 64.54; H, 5.10%.

3-Formyl-5,6-dihydro-2-phenyl-2*H*-naphto[1,2-*b*]thiopyran (3f): Orange oil; MS m/z 304 (M⁺; 7), 275 (100), 262 (9), 241 (7), 165 (7), 115 (13); ¹H NMR δ =2.38—3.03 (4H, m), 5.32 (1H, s), 7.05 (1H, s), 6.88—7.71 (9H, m), 9.63 (1H, s); ¹³C NMR δ =28.0 (t), 28.4 (t), 37.7 (d), 190.9 (C=O; d). Found: m/z 304.0925. Calcd for C₂₀H₁₆OS: M, 304.0922.

3-Formyl-5,6-dihydro-2,2-dimethyl-2H-naphto[1,2-b]thiopyran (3g): Yellow cubes; MS m/z 256 (M⁺; 10), 227 (100), 212 (4), 178 (10), 165 (8), 128 (7), 115 (10), 28 (10); 1 H NMR δ =1.65 (6H, s), 2.54—2.60 (2H, m), 2.84—2.89 (2H, m), 6.72 (1H, s), 7.16—7.37 (3H, m), 7.59—7.62 (1H, m), 9.51 (1H, s); 13 C NMR (DEPT) δ =27.7 (2CH₃), 28.0 (CH₂), 28.0 (CH₂), 43.7 (C), 192.0 (H- \underline{C} =O). Found: C, 74.77; H, 6.45%. Calcd for C₁₆H₁₆OS: C, 74.96; H, 6.29%.

5,6-Dihydro-2,3-dimethoxycarbonyl-2*H***-naphto[1,2-***b***]-thiopyran (3h): Yellow crystals; MS m/z 316 (M+; 1), 257 (M+-COOMe; 100), 197 (18), 165 (6), 28 (3); ¹H NMR \delta=2.42—2.53 (1H, m), 2.60—2.96 (3H, m), 3.69 (3H, s), 3.84 (3H, s), 4.83 (1H, s), 7.16—7.29 (3H, m), 7.41 (1H, s), 7.58—7.61 (1H, m); ¹³C NMR (DEPT) \delta=27.9 (CH₂), 28.5 (CH₂), 38.4 (CH), 52.3 (CH₃), 53.0 (CH₃), 166.2 (C=O), 170.4 (C=O). Found: C, 64.52; H, 5.09%. Calcd for C₁₇H₁₆O₄S: C, 64.54, H, 5.10%.**

A Typical Procedure for the Reaction of the Thioketone 1 with Cycloalkenones. A solution of the dimer (5.00 mmol/monomer) of the thioketone 1 and 2-cyclopenten-1-one (10.0 mmol) in dry THF (50 cm³) was refluxed for 2 h under a nitrogen atmosphere. The solvent was removed and the residue was chromatographed on Wakogel C-200 with ethyl acetate-hexane (1:8) to give the elimination product 5a, which was recrystallized from ether-hexane.

5,6,10,11-Tetrahydro-11-thiacyclopenta[*b*]**phenanthren-8(9H)-one (5a):** Yellow cubes; MS m/z 254 (M⁺; 25), 226 (67), 212 (100), 197 (25), 178 (25), 165 (29); ¹H NMR δ =1.93—3.22 (8H, m), 4.08—4.73 (1H, m), 6.66—7.07 (1H, m), 7.17—7.88 (4H, m); ¹³C NMR δ =27.0 (t), 28.0 (t), 28.4 (t), 37.4 (t), 38.5 (d), 202.8 (C=O; s). Found: C, 75.68; H, 5.39%. Calcd for C₁₆H₁₄OS: C, 75.55; H, 5.55%.

5,6,7,7a,9,10,11,11a-Octahydro-7-phenylthio-8*H***-12-thiabenz**[α]anthracen-8-one (4b): Pale yellow needles; MS m/z 378 (M+; 1), 269 (M+—PhS; 100), 212 (65), 110 (51); 1 H NMR δ =1.88—2.88 (10H, m), 2.96 (1H, dd, J=2.0, 4.0 Hz), 4.34 (1H, d, J=2.0 Hz), 4.44—4.48 (1H, m), 7.04—7.47 (9H, m); 13 C NMR δ =22.5 (t), 28.3 (t), 29.0 (t), 30.2 (t), 38.0 (d), 40.3 (t), 50.3 (d), 52.0 (d), 206.8 (C=O; s). Found: C, 72.75; H, 5.86%. Calcd for C₂₃H₂₂OS: C, 72.97; H, 5.86%.

5,6,9,10,11,11a-Hexahydro-8*H***-12-thiabenz**[*a*]anthracen-8**-one (5b):** Yellow plates; MS m/z 268 (M⁺; 26), 212 (100), 197 (10); 1 H NMR δ =1.83—3.13 (10H, m) 3.83—4.20 (1H, m), 6.87—7.63 (5H, m); 13 C NMR δ =20.7 (t), 27.9 (2C; t), 28.1 (t), 38.6 (t), 38.7 (d), 196.8 (C=O; s). Found: m/z 268.0915. Calcd for C_{17} H₁₆OS: M, 268.0923.

Elimination of Thiophenol from the Cycloadduct 4b. To a solution of the cycloadduct 4b (2.80 mmol) in benzene (30 cm³) was added to a sodinum ethoxide solution (sodium metal (14.0 mmol) in ethanol (30 cm³)). After stirring for 30 min, water was added to the reaction mixture. The product was extracted with ether and dried over anhydrous MgSO₄. The solvent was removed and the residue was chromatographed on Wakogel C-200 with ethyl acetate-hexane (1:4) to give the elimination product 5b which was recrystallized from ether. The yield was 79%.

A Typical Procedure for the Reaction of Thioketone 1 with Acid Chlorides. A solution of the dimer (3.72 mmol/monomer) of the thioketone 1 and acryloyl chloride (4.10 mmol) in dry benzene (50 cm³) was refluxed for 5 min under a nitrogen atmosphere. Et₃N (37.2 mmol) was added to the reaction mixture after cooling to 0 °C; the solution was again refluxed for 2 h. The reaction mixture was poured into water, and the product was extracted with ether. The extract was dried over anhydrous MgSO₄. The solvent was removed and the residue was chromatographed on Wakogel C-200 with benzene–hexane (1:2) to give the dienecarbothioic ester 6a, which was recrystallized from ether–hexane.

S-Phenyl 5,6-Dihydro-2*H*-naphto[1,2-*b*]thiopyran-3-carbothioate (6a): Orange cubes; MS m/z 336 (M⁺; 5), 227 (M⁺—PhS; 100), 199 (29), 197 (10), 109 (8), 39 (8), 28 (4); ¹H NMR δ=2.57—2.91 (4H, m), 3.73 (2H, s), 7.17—7.61 (10H, m); ¹³C NMR (DEPT) δ=24.5 (CH₂), 28.0 (CH₂), 28.5 (CH₂), 187.9 (C=O). Found: C, 71.31; H, 4.60%. Calcd for C₂₀H₁₆-OS₂: 71.39; H, 4.79%.

S-Phenyl 5,6-Dihydro-2-methyl-2H-naphto[1,2-b]thiopyran-3-carbothioate (6b): Yellow cubes; MS m/z 350 (M⁺; 4), 241 (100), 213 (9), 109 (4), 39 (4), 28 (11); ¹H NMR δ=1.28 (3H, d, J=6.8 Hz), 2.47—2.98 (4H, m), 4.20 (1H, q, J=6.8 Hz), 7.16—7.66 (10H, m); ¹³C NMR (DEPT) δ=20.7 (CH₃), 28.1 (CH₂), 28.6 (CH₂), 32.4 (CH), 188.0 (C=O). Found: C, 71.79; H, 5.31%. Calcd for C₂₁H₁₈OS₂: C, 71.96; H, 5.18%.

S-Phenyl 5,6-Dihydro-2-phenyl-2*H*-naphto[1,2-*b*]thiopyran-3-carbothioate (6c): Orange cubes; MS m/z 412 (M+; 3), 303 (M+-PhS; 100), 275 (90), 197 (3), 109 (12), 39 (2), 28 (17); ¹H NMR δ=2.39—2.99 (4H, m), 5.36 (1H, d, J=2.3 Hz), 7.13—7.61 (15H, m); ¹³C NMR (DEPT) δ=28.1 (CH₂), 28.6 (CH₂), 39.8 (CH), 188.3 (C=O). Found: C, 75.88; H, 4.77%. Calcd for C₂₆H₂₀OS₂: C, 75.69; H, 4.89%.

S-Phenyl 5,6-Dihydro-2,2-dimethyl-2*H*-naphto[1,2-*b*]thiopyran-3-carbothioate (6d): Orange cubes; MS m/z 364 (M⁺; 3), 255 (M⁺—PhS; 100), 227 (29), 211 (6), 197 (2), 109 (13), 39 (6), 28 (3); ¹H NMR δ=1.59 (6H, s), 2.55—2.91 (4H, m), 7.17—7.61 (10H, m); ¹³C NMR (DEPT) δ=27.3 (2CH₃), 28.1 (CH₂), 28.2 (CH₂), 44.6 (C), 189.0 (C=O). Found: C, 72.61; H, 5.42%. Calcd for C₂₂H₂₀OS₂: C, 72.49; H, 5.53%.

A Typical Procedure for the Formation of Dithioesters with Lawesson's Reagent. A suspension of thioester 6a (1.00 mmol) and Lawesson's reagent (0.75 mmol) in dry toluene (30 cm³) was refluxed for 6 h under a nitrogen atmosphere. The solvent was removed and the reaction mixture was passed through a short column of Florisil using benzene-hexane (1:2) as an eluent, and the solvent was removed. Dithioester

7a was recrystallized from ether-hexane.

Phenyl 5,6-Dihydro-2*H*-naphto[1,2-*b*]thiopyran-3-carbodithioate (7a): Red plates; MS m/z 352 (M+; 27), 243 (M+-PhS; 100), 199 (15), 197 (9), 165 (26), 109 (13), 39 (13); ¹H NMR δ =2.64—2.93 (4H, m), 4.16 (2H, s), 7.17—7.63 (10H, m); ¹³C NMR (DEPT) δ =28.2 (CH₂), 28.8 (CH₂), 29.4 (CH₂), 221.0 (C=S). Found: m/z 352.0404. Calcd for C₂₀H₁₆S₃: M, 352.0414.

Phenyl 5,6-Dihydro-2-methyl-2*H*-naphto[1,2-*b*]thiopyran-3-carbodithioate (7b): Red cubes; MS m/z 366 (M⁺; 24), 257 (M⁺—PhS; 100), 213 (10), 197 (5), 165 (13), 109 (16), 39 (10); ¹H NMR δ=1.32 (3H, d, J=6.9 Hz), 2.55—2.97 (4H, m), 4.89 (1H, q, J=6.9 Hz), 7.17—7.67 (10H, m); ¹³C NMR (DEPT) δ=20.3 (CH₃), 28.3 (CH₂), 28.8 (CH₂), 36.6 (CH), 220.9 (C=S). Found: C, 68.94; H, 5.00%. Calcd for C₂₁H₁₈S₃: C, 68.81; H, 4.95%.

Phenyl 5,6-Dihydro-2-phenyl-2*H*-naphto[1,2-*b*]thiopyran-3-carbodithioate (7c): Red cubes; MS m/z 428 (M+; 33), 319 (M+-PhS; 100), 275 (46), 197 (4), 165 (7), 109 (15), 39 (10); ¹H NMR δ =2.56—2.97 (4H, m), 6.14 (1H, s), 7.13—7.57 (15H, m); ¹³C NMR (DEPT) δ =28.3 (CH₂), 28.7 (CH₂), 43.6 (CH), 221.3 (C=S). Found: C, 72.76; H, 4.80%. Calcd for C₂₆H₂₀-S₃: C, 72.85; H, 4.70%.

Phenyl 5,6-Dihydro-2,2-dimethyl-2*H*-naphto[1,2-*b*]thiopyran-3-carbodithioate (7d): Red oil; MS m/z 380 (M⁺; 8), 271 (M⁺—PhS; 100), 255 (20), 227 (58), 178 (8), 165 (7), 109 (16), 65 (15), 39 (16); ¹H NMR δ=1.70 (6H, s), 2.56—2.96 (4H, m), 6.72 (1H, s), 7.16—7.60 (9H, m); ¹³C NMR (DEPT) δ=27.0 (2CH₃), 28.1 (2CH₂), 45.3 (C), 226.8 (<u>C</u>=S). Found: m/z 380.0717. Calcd for C₂₂H₂₀S₃: M, 380.0727.

Reaction of the Thioketone 1 with 2-Chloroacrylonitrile. A solution of the dimer (3.58 mmol/monomer) of thioketone 1 and 2-chloroacrylonitrile (17.9 mmol) in dry benzene (50 cm³) was refluxed for 1 h under a nitrogen atmosphere. The solvent was removed and the residue was chromatographed on Wakogel C-200 with ethyl acetate-hexane (1:8) to give the cycloadduct 21, which was recrystallized from ether (Yield 69%)

3-Chloro-3-cyano-3,4,5,6-tetrahydro-2*H*-naphto[1,2-*b*]-thiopyran (2l): Pale yellow cubes; *endo-exo* mixture (major product: minor product=ca. 7:3); mp 143—145 °C; MS m/z 369 (M+; 3), 260 (M+-PhS; 100), 224 (57), 190 (22), 109 (39); ¹H NMR (major product) δ=2.29—2.50 (1H, m), 2.69—2.89 (3H, m), 3.29 (1H, dd, J=2.3, 13.5 Hz), 3.90 (1H, J=2.3 Hz), 4.02 (1H, d, J=13.5 Hz), 7.13—7.43 (6H, m), 7.55—7.67 (3H, m); (minor product) δ=2.29—2.50 (1H, m), 2.69—2.89 (3H, m), 3.33 (1H, dd, J=2.3, 12.7 Hz), 4.01 (1H, d, J=12.7 Hz), 4.16 (1H, d, J=2.3 Hz), 7.13—7.43 (6H, m), 7.55—7.67 (3H, m); ¹³C NMR (DEPT) (major product) δ=28.0 (CH₂), 30.6 (CH₂), 33.3 (CH₂), 55.8 (C), 58.6 (CH), 117.6 (C=N); (minor product) δ=28.0 (CH₂), 30.9 (CH₂), 32.5 (CH₂), 59.2 (C), 60.8 (CH), 116.8 (C=N). Found: C, 64.84; H, 4.22; N, 3.63%. Calcd for C₂₀H₁₆NS₂Cl: C, 64.94; H, 4.36; N, 3.79%.

Elimination of Thiophenol from the Cycloadduct 21. A solution of the cycloadduct mixture 21 (1.30 mmol) and Et_3N (13.0 mmol) in dry benzene (50 cm³) was refluxed for 2 h under a nitrogen atmosphere. The reaction mixture was poured into water and extracted with ether. The ether extract was then dried over anhydrous MgSO₄. The solvent was removed and the residue was chromatographed on Wakogel C-200 to give 2*H*-thiopyran 8, which was recrystallized from etherhexane (Yield 94%).

3-Cyano-5,6-dihydro-2*H*-naphto[1,2-*b*]thiopyran (8): Yel-

low cubes; mp 142—143 °C; IR 2198 cm⁻¹ (C=N); MS m/z 333 (M+; 92), 275 (M+-CN-S; 10), 256 (M+-Ph; 100), 224 (37), 190 (43), 165 (27), 134 (26), 91 (40), 28 (73); ¹H NMR δ =2.23—2.28 (2H, m), 2.53—2.59 (2H, m), 3.49 (2H, s), 7.02—7.05 (1H, m), 7.14—7.27 (7H, m), 7.57—7.61 (1H, m); ¹³C NMR (DEPT) δ =26.4 (CH₂), 27.6 (CH₂), 28.1 (CH₂), 100.0 (C-C=N), 118.1 (C=N). Found: C, 72.05; H, 4.46; N, 4.39%. Calcd for C₂₀H₁₅NS₂: C, 72.04; H, 4.53; N, 4.20%.

Reaction of the Thioketone 1 with Methyl 2-Bromoacrylate. A solution of the dimer (3.35 mmol) of thioketone 1 and methyl 2-bromoacrylate (5.02 mmol) in dry benzene (50 cm³) was refluxed for 1 h under a nitrogen atmosphere. The reaction mixture was washed with a NaHCO₃ aqueous solution and extracted with ether. The ether extract was then dried over anhydrous MgSO₄. The solvent was removed and the residue was chromatographed on Wakogel C-200 with benzene-hexane (1:2) as an eluent to give elimination product 3a. The yield was 56%. When the reaction mixture was refluxed in the presence of Et₃N (33 mmol) for 1 h, the yield was increased to 74%.

References

- 1) T. Karakasa, S. Moriyama, and S. Motoki, Chem. Lett., 1988, 1029.
- 2) S. Moriyama, T. Karakasa, and S. Motoki, *Bull. Chem. Soc. Jpn.*, **63**, 2540 (1990).
- 3) K. R. Lawson, A. Singleton, and G. H. Whitham, J. Chem. Soc., Perkin Trans. 1, 1984, 859.
- 4) H. Westmijze, H. Kleijn, J. Meijer, and P. Vermeer, Synthesis, 1979, 432.
- 5) R. Hoffmann and K. Hartke, *Chem. Ber.*, 113, 919 (1980).
- 6) P. Gosselin, S. Masson, and A. Thuillier, *Tetrahedron Lett.*, 21, 2421 (1980).
- 7) W. A. Sheppared and J. Diekmann, J. Am. Chem. Soc., 86, 1891 (1964).
- 8) G. H. Schmid and P. H. Fitzgerald, J. Am. Chem. Soc., 93, 2547 (1971).